Workshop: harmonization of the FMD vaccination strategy in the North Africa

Atelier : harmonisation de la stratégie de vaccination contre la fièvre aphteuse en Afrique du Nord

30-31 mars 2016 - Tunis

Elements of FMD post-vaccination monitoring programme

Éléments du programme de surveillance post-vaccination contre la fièvre aphteuse

Labib BAKKALI KASSIMI
ANSES
Laboratoire de Santé Animale de Maisons-Alfort
Laboratoire OIE et National de référence pour la fièvre aphteuse
Control of FMD is a complex process

- Control of animal movement and trade
- Active and/or passive surveillance
- Early warning and detection system
- Establishment of a contingency plan
- Vaccination (emergency/preventive)
- Post-vaccination monitoring (PVM)
Vaccination is one of the most important components of FMD control

- to reduce clinical disease
- to eliminate virus circulation
- to maintain FMD freedom
- to regain FMD freedom

Why vaccinate

Ineffective vaccination program
Effective vaccination program
Factors affecting vaccination program effectiveness

- Host factors
 - Age
 - Prior exposure
 - Health condition
 - Time since vaccination

- Vaccine strain
 - Match to circulating strain(s)

- Vaccine characteristics
 - Potency
 - Stability
 - Shelf life
 - Purity
 - Vaccine composition and adjuvant

- Application
 - Vaccination strategy
 - Vaccination campaign
 - Cold chain
 - Trained vaccinators

Be aware

Labib Bakkali-Kassimi 30-31 mars 2016 - Tunis
PVM is necessary to optimise the vaccination programme, and the use of limited resources in attaining expected objectives,

- Important component in vaccine-based FMD control (PCP stage 2-3),
- A requirement for countries seeking official recognition by OIE (endorsed national control programmes or freedom with vaccination)(PCP stage 3 and beyond)
Objectives of post vaccination monitoring (PVM)

- Determine vaccination coverage
- Evaluation of immune response
- Demonstrate impact of vaccination
- Demonstrate FMD freedom
- Evaluate vaccine performance
- Identify causes of ineffective vaccination
- Optimize vaccination strategy and program
- Optimize use of resources
- Improve quality of vaccines

Labib Bakkali-Kassimi 30-31 mars 2016 - Tunis
✓ Vaccine characteristics (expected serological response: purity, duration Abs, protective titer)
✓ Desired percent of vaccination coverage,
✓ Desired percent protection,
✓ Representative sample
✓ Awareness of livestock owners,
✓ Training in effective sampling, preservation and shipment of samples,
✓ Training of lab staff and adequate Lab capacity, (Accuracy, turnaround time,…)

Checklist for PVM
Who needs to be Involved in PVM?

- Decision makers: set up the objectives of PVM and assign resources,
- Epidemiologists and statisticians: select and design the appropriate methods and carry out data analyses,
- Field veterinarians, nongovernment organisations and animal health workers: collect samples,
- Veterinary diagnostic laboratories: share information on the performance of the serological tests, carry out the diagnostic analysis and participate in the interpretation of the serological test results,
- FMD Reference Laboratories for additional advices if needed.
PVM tools

Serological surveillance:
- Animal identification system
- Sampling design based on farming system and means
- Day post vaccination for sampling (30dpv)
- Sample size (CI ≥ 95%)
- Test to be used (SP and NSP)
- Reference sera

Virological surveillance:
- Clinical and passive surveillance (regular field investigations)
- Probang test (if NSP positive)

Data analysis and interpretation:
- Specificity and sensitivity of the tests
- Context of production system, delivery system and epidemiological situation
- Vaccination coverage and protection
PVM tools: serological surveillance

Replication cycle of the virus

- Adsorption
- Replication complex
- Nucleus
- IRES driven Translation
- Polyprotein processing
- Cell lysis
- Viral egress
- Negative RNA synthesis
- Replication of RNA
- Positive (genomic) RNA synthesis
- Mature virus particles
- Encapsidation

Antibody response in animals

- Infection
 - Live virus
 - VP1-4
 - 3A
 - 3C
 - 3B
- Vaccination
 - Inactivated virus
 - VP1-4
 - 3D
- Infection
 - VP1-4
 - 3D
- Vaccination
 - Inactivated virus
 - VP1-4
 - 3D

Virus replication in the animal produces structural (capsid) proteins, which form virus particles, and non-structural proteins, with enzymatic and regulatory functions.

Infected animals produce antibody to both structural (capsid) proteins and non-structural proteins.

The animal receives predominantly structural proteins in the form of purified virus particles and small amounts of non-structural protein contaminants.

Vaccinated animals produce antibody primarily to structural (capsid) proteins and respond only weakly to contaminating non-structural proteins.

Can discriminate between infected and vaccinated animals on basis of differential antibody response to structural and non-structural proteins.
Tests for Serological surveillance

Antibodies against SP

- Virus neutralisation test
- Liquid Phase Blocking ELISA (LPBE)
- Solid Phase Blocking ELISA (SPCE)

Antibodies against NSP

NSP ELISA

Labib Bakkali-Kassimi 30-31 mars 2016 - Tunis
PVM tools: Clinical and virological surveillance

Regular field investigations

Laboratory tests

Virus isolation

Probang

RT-PCR
Interpretation of PVM data

If low sero-prevalence and/or protection:

- Technical gap (e.g. vaccine quality, cool chain, training of staff, etc)
- Administrative gap (e.g. vaccine delivery)
- Not all animals were vaccinated
- Introduction of new animals after vaccination
- Vaccinated animals have moved and unvaccinated were introduced

Investigation ➔ Improvement
Improve vaccination program effectiveness

- Improve vaccine (strain, quality,..)
- Improve vaccine storage (cold chain)
- Improve delivery system
- Improve training
- Improve awareness
Challenges

✓ Animal identification
✓ Awareness and incentives
✓ Vaccine quality control centers
✓ Correlation between protection and antibody titers
✓ Validated PVM screening tools
 (Calibrated tests, tests with vaccine strain)
Vaccination is one of the most important components of FMD control,

Ineffective vaccination is a risk and a cost,

Several factors may lead to ineffective vaccination and should be controlled,

PVM is necessary to ensure the effectiveness of vaccination,

PVM program have to be well prepared according to the objective of vaccination and the local situation,

Several elements are to be considered to establish an effective PVM,

Collaboration between all actors and their involvement is mandatory for success of vaccination/PVM programs,

Effectiveness of a control program is the result of a combined effect of vaccination (if used) and additional measures,

Guidelines for FMD PVM established by OIE/FAO working group will be soon available.
THANK YOU